Time Series (STEM-EAP17)

Master's in Applied Econometrics and Forecasting 1st Semester 2021/2022 Wednesdays 18:00-21:00, F2-103

Instructor:	Prof. Nuno Crato, 105 Quelhas 4, 21 392 5846 (x. 3846)		
	ncrato@iseg.ulisboa.pt		
Textbook:	W.S. Wei, Time Series Analysis: Univariate and Multivariate Methods,		
	2 nd Ed., Addison-Wesley, 2005.		
Support:	P. Brockwell & R. Davis, Introduction to Time Series and Forecasting,		
	3rd ed., Springer 2016		
	T.C. Mills, Applied Time Series Analysis: A Practical Guide to Modelling		
	and Forecasting, Academic Press 2019		
Software:	PEST/ITSM, EVIEWS, Python, R, or any other software with time series		
	analysis and forecasting capability		
Goals:	This is a first graduate course on univariate time series analysis and		
	forecasting. It deals with linear models, autocorrelation analysis, and		
	basic spectral methods. It intends to introduce the fundamental time		
	series theoretical tools and to initiate students' training in the practical		
	analysis of economic and financial time series.		
Evoluation	Two tests (2 x 15%), aroun project (25%) and final exam (25%)		

Evaluation:	Two tests (2 x 1	15%), group	project (35%)	and final exam	(35%).

Classes	Topics	Textbook
15 Sep	Stationary stochastic processes and time series	2.1 - 4
22 Sep	ACF, PACF, MA(\sim) e AR(\sim)	2.5 – 6
06 Oct	Autoregressive and moving average processes	3.1 – 2
13 Oct	Duality AR-MA and ARMA models – TEST 1	3.3 – 4
20 Oct	Nonstationary processes	4.1 - 3
27 Oct	Forecasting. Seasonality	5.1 - 7, 8.1 - 3
03 Nov	Model identification and fitting	6.1 - 2, 7.1 - 7
10 Nov	Model selection. Project preparation – TESTE 2	8.4
17 Nov	Unit root tests and practical examples	9.1 – 4
24 Nov	Fourier analysis	11.1 - 2
<mark>01 Dec</mark>	The spectrum and the periodogram	<mark>12.1 – 3</mark>
08 Dec	Periodogram, spectral estimation	<mark>13.1-13.3</mark>
15 Dec	Group projects presentation and discussion	

Note: Dec 1 and 8 are holidays and in due time we may have to adjust the schedule